Relevance Optimization in Image Database Using Feature Space Preference Mapping and Particle Swarm Optimization

نویسندگان

  • Mayuko Okayama
  • Nozomi Oka
  • Keisuke Kameyama
چکیده

Two methods for retrieval relevance optimization using the user’s feedback is proposed for a content-based image retrieval (CBIR) system. First, the feature space used in database image clustering for coarse classification is transferred to a preference feature space according to the user’s feedback by a map generated by supervised training, thereby enabling to collect user-preferred images in the matching candidates. Second, the parameters in the fine-matching relaxation operation is optimized according to the user’s evaluation of the retrieved image ranking using Particle Swarm Optimization. In the experiments, it is shown that the retrieval rankings are improved suiting the user’s preference when feature space mapping and parameter optimization are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M Eta - H Euristics B Ased Arf O Ptimization for I Mage

The proposed approach avoids the semantic gap in image retrieval by combining automatic relevance feedback and a modified stochastic algorithm. A visual feature database is constructed from the image database, using combined feature vector. Very few fast-computable features are included in this step. The user selects the query image, and based on that, the system ranks the whole dataset. The ne...

متن کامل

A Meta-Heuristic Optimization Approach for Content Based Image Retrieval using Relevance Feedback Method

With the potential growth of multimedia hardware and applications, the machines have to realize the information by adapting to the internal information. An adaptive content based image retrieval (CBIR) approach based on relevance feedback and Firefly algorithm is proposed in this paper. In addition to the color descriptor, wavelet-based texture descriptor is considered to improve the retrieval ...

متن کامل

Performance Evaluation of Content-Based Image Retrieval on Feature Optimization and Selection Using Swarm Intelligence

The diversity and applicability of swarm intelligence is increasing everyday in the fields of science and engineering. Swarm intelligence gives the features of the dynamic features optimization concept. We have used swarm intelligence for the process of feature optimization and feature selection for content-based image retrieval. The performance of content-based image retrieval faced the proble...

متن کامل

Chaotic Binary Particle Swarm Optimization for Feature Selection using Logistic Map

Feature selection is a useful technique for increasing classification accuracy. The primary objective is to remove irrelevant features in the feature space and identify relevant features. Binary particle swarm optimization (BPSO) has been applied successfully in solving feature selection problem. In this paper, chaotic binary particle swarm optimization (CBPSO) with logistic map for determining...

متن کامل

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007